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Abstract

This report describes a two level parallelization of a Computational Fluid Dynamic

(CFD) solver with multi-zone overset structured grids. The approach is based on a

hybrid MPI+OpenMP programming model suitable for shared memory and clusters

of shared memory machines. The performance investigations of the hybrid application

on an SGI Origin2000 (O2K) machine is reported using medium and large scale test

problems.

1 Introduction

The advent of multiprocessing hardware and software technologies has introduced new chal-

lenges into high-performance computing (HPC). Various parallel programming paradigms

have been developed on distributed memory (DM) and distributed-shared memory (DSM)

systems. Some widely used models are programs based on message passing, such as MPI

[20], suitable both on DM and DSM architectures. Other popular paradigms are based on

parallel compiler directives, such as OpenMP [11] and HPF [5], where the former exploits

fshared memory parallelism, and the latter takes advantage of data parallelism. Most of _h_

paralM application codes based on the above approaches use only a single level of parallelism.



With the current trend in HPC hardware towards clusters of shared-memory symmetric

multi-processor (SMP) compute nodes, hybrid programming techniques have been intro-

duced that exploit parallelism beyond a single level. The main thrust of these methods is to

combine coarse and fine grain parallelism; this is obtained by a domain decomposition and

loop-level parallelism, respectively. Communication of data across SMP clusters is achieved

via message passing or shared memory referencing, and loop level parallelization by compiler

directives. Hybrid approaches have also been applied to various other scientific disciplines,

(see e.g. [15] and [8] for hybrid MPI+OpenMP approaches). Our main effort here is to

identify multi-level parallelism in a given sequential code, and to incorporate the MPI and

OpenMP programming models and interfaces into that code. This effort is substantially less

programming intensive for applications whose computational regions already enjoy a natural

domain decomposition structure.

A hybrid methodology, named "Shared Memory Multi-Level Parallelism" (MLP) [19] and

developed at NASA Ames, uses a fundamentally different approach. MLP exploits shared

memory for all data communication via direct memory referencing instructions. MLP has

been incorporated into two of NASA's multi-zonal CFD solvers and into a climate modeling

code. The performance efficiency of MLP codes has been reported to be very successful on

NASA's SGI single image system, 512 CPU R12K processors. The implementation of MLP

programming is significantly simpler than the hybrid MPI+OpenMP, in that no extensive

message passing library functions are used. In contrast, the MLP library, also developed

at NASA Ames, consists of a few routines based on UNIX calls. A comparison of OVER-

FLOW performance assessment, using MLP versus the MPI-based code, can be found in

references [4] and [3]. MLP is currently limited to shared memory architectures.

This report describes the implementation of a hybrid MPI+OpenMP programming model

into NASA's high fidelity overset-grid CFD solver, OVERFLOW-D [9, 10]. The objective

is to study the scalability of various parallel schemes implemented in this code on differ-

ent architectures, shared memory and SMP cluster systems, such as O2K and IBM SP.

OVERFLOW-D is based on a version of the aerodynamic flow solver OVERFLOW [12],

which is designed for complex configurations with static grid systems. The former was pri-

marily developed for moving-body (dynamic) grid systems.

Implementation of our hybrid approach into either the dynamic or the static version of

the code would have been similar, but we chose the dynamic version for reasons of avail-

ability on several CFD problems of interest at the start of this work. We want to study

the performance of our application code as it is applied to large scale test cases, which are

more representative of practical problems. Such problems consist of large scale grid systems.

Generation of large scale grids for the static application would have been very costly and

time consuming. OVERFLOW-D has the capability of automatically generating its own



off-body (background)grids that are compatible with near-body grids.
The remainder of this report includesa brief overviewof the numericalmethod, §2,and

the hybrid paralMization strategy, §3. Someperformanceresults are presentedin §4. The

test problem is related to the CFD simulation of complex vortex dynamics.

The results demonstrate the functionality of the hybrid algorithm implemented. The

performance results, however, are preliminary and reflect our initial experiences with the

new algorithm on an SGI O2K machine. A discussion of future work, a summary and a

conclusion are given in §5.

2 Numerical Method

In this section we will briefly review the basics of the flow solver and domain connectivity

on structured overset grids.

2.1 Flow Solver

The multi-block, or "multi-zone", overset CFD code, OVERFLOW [12], is popular for high-

fidelity complex aerodynamic shapes consisting of multiple geometric components, in which

individual blocks of body-fitting overlap grids can be constructed easily about each compo-

nent. Grid blocks are either attached, near-body, or detached (off-body). The latter is also

called a background or a wake grid. The union of near and off-body blocks covers the entire

computational domain known as the "Chimera" [18] style decomposition, which falls into

the general category of a Schwartz domain decomposition. The code is a Reynolds averaged

Navier-Stokes software, augmented with a number of turbulence models. The dynamic code,

OVERFLOW-D, simplifies the modeling of bodies in relative motion. For example, in typical

rotory-wing problems, the near-field is modeled with one or more grids generated about the

moving rotor blades. The code automatically generates cartesian wake grids, called bricks,

that encompass the curvilinear near-body grids. At each time iteration, flowfield equations

are solved independently on each grid zone in a sequential manner. Overlap boundary (in-

tergrid) data is updated from previous solutions prior to the current time step. Updates are

furnished by a Chimera interpolation procedure.

The code uses finite differences in space, and implicit time-stepping on structured grids.

A variety of time-stepping and spatial differencing schemes are available. For steady-state

problems, faster convergence is achieved by a spatially varying virtual time increment, which

is chosen based on a CFL (Courant-Friedrichs-Lewy) number. The code offers a number of

user-specified solution algorithms, such as three-factored block tridiagonal, penta diagonal,

and Lower-Upper Symmetric Gauss-Siedel (LU-SGS) [171 schemes. Upgrades [13] have been



incorporatedinto newerversionsof the dynamic codeto improve the temporal and spatial

accuracyof the solution scheme.They consist of higher order spatial differencingand the
addition of a subiteration schemeat eachtime-step to reducefactorization errors.

2.2 Overset-grid Connectivity

A domain connectivity program is used to determine the intergrid boundary data, (see Fig.

1), which consists of "holes" and outer boundary points on each grid. Holes are cut in grids

which intersect solid surfaces, such as when a portion of an overset grid lies inside a physical

body. Adjacent grids are expected to have one-cell overlap to ensure continuity; for higher

order accuracy, a two-cell overlap is sought [13]. In the static version, the coordinates of

interpolated data are accessed from a pre-processed data file prior to the start of the time

step loop. Unlike the static case and due to the relative motion of the grids, a Domain

Connectivity Function (DCF) [16] program within the dynamic version is used to compute

intergrid donor points that will be supplied to other grids, creating "holes" as needed. The

DCF procedure is fully coupled with the flow solver.

3 Hybrid Programming Model

In the following subsection we describe a simple flexible hybrid parallel design which imple-

ments a combined MPI+OpenMP model, a two level parallelism, into the OVERFLOW-D

application code. The code is typical of multi-zonal CFD code; the approach discussed

here can virtually be implemented on all such CFD or other scientific applications. The

OVERFLOW-D solver has already been parallelized [21] via an MPI distributed style algo-

rithm, adopting the SPMD (Single Program Multiple Data) style, and is suitable on both

the DM and DSM platforms.

Efforts for development of the current hybrid approach primarily consist of integrat-

ing and interfacing the OpenMP programming into the OVERFLOW-D code. The task is

straightforward, and involves a focused analysis to identify the potential loops in the ap-

plication code suitable for OpenMP. For large codes, such as for our application, manual

analysis to select such loops is time prohibitive and error prone. At the time of this work,

a recently developed NASA compiler-based automatic parallelization tool, CAPO [7], has

become available. In this work we have made use of this tool along with some manual effort

to parallelize some of the loops in OVERFLOW-D.

The combined implementation permits the execution of the OVERFLOW-D code in

pure message passing or, as in the true "hybrid" model, with multiple threads per MPI

process. The former extends the code capability to run on clusters of SMP. In the following
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subsections §3.1and §3.2,webriefly reviewthe MPI and OpenMP programmingmodelsof

the solver part of the OVERFLOW-D code.

3.1 MPI Implementation

MPI implementation has been developed specifically around the sequential version of OVERFLOW-

D and around the multi-block feature of the code, which offers a natural coarse grain par-

allelism. The main computational logic at the top level of the sequential code consists of

a "time-loop", "grid-loop", and a "subiteration loop". The last two loops are nested in

the time loop, respectively. Solutions are obtained on the individual grids with imposed

boundary conditions, where the Chimera intergrid boundaries are updated successively at

the completion of the solution on each grid in the sequence. Upon completion of the grid-

loop, the solutions are automatically advanced to next time-step. The overall procedure may

be thought of as a "Gauss-Seidel" iteration.

To facilitate parallel execution, a strategy is required to cluster grid components into

groups. Each group may contain several grid zones. The grouping is based on a bin-packing

strategy that seeks to maintain an even number of total grid points per group, and at the

same time retain a degree of connectivity among the grids within a group. This issue is

subject to load balancing among parallel processors and will be addressed in another work.

The main change in the logic of the sequential code is to subdivide the grid-loop into

two loops, a loop over groups and a loop over the grids within each group. The outer

"group-loop" is done in parallel and contains the grid-loop. One MPI process is assigned to

each group, with the total number of groups, NMPi_proc , equal to the total number of MPI

processors invoked at the execution of the code. The intergrid update among grids within

each group, named intra-group, is done similarly to the serial case. Chimera updates are

also neccessary for overlapping grids across group boundaries, known as inter-group data

exchanges, (see Fig. 1). The supply of inter-group donor points from grids in, say, the n th

group to grids of the rn th group, m = 1, ..., NMPI-proc, is stored in a "send" array that will be

exchanged by MPI calls. The inter-group exchanges are done at the beginning of a current

time-step based on the interpolation data of the previous one.

In the hybrid mode, with multiple threads assigned for each MPI process, only the master

thread is responsible for data exchanges as discussed below. MPI processes are synchronized

at the completion of the solution over each group. In addition, for problems with moving

grids, the DCF program must be invoked to compute new donors prior to the following

time-step.
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Figure 1: Overset grid connectivity, grouping, interpolation, and data exchanges.

3.2 OpenMP Implementation

The MPI-based scheme only accounts for one level of parallelism; a second level is exploited

by fine parallelism using OpenMP compiler directives. Compilers on certain machines, such

as O2K, have automatic parallelization options, but the loops chosen tend to be the very

innermost loops. This tendency reduces the efficiency of multi-threading. The OpenMP

[11] approach offers a superior alternative. The main effort of OpenMP implementation is

first to identify parallel loops and parallel regions into the code, and then to insert OpenMP

directives along with the proper list of the privatizable and shared variables.

Manual analysis would be tedious and very time-consuming for large programs such

as OVERFLOW-D, which consist of over 100,000 lines of FORTRAN and approximately

1000 subroutines. We have employed the automatic parallelization tool CAPO [7] to detect

parallelism and insert directives in the code. CAPO is based on the CAPTools [6] toolkit

and makes full use of CAPTools unprecedented interprocedural analysis for determining data

dependence. CAPO allows a single level of OpenMP for multiple nested loops. The use of

directives, such as !$OMP PARALLEL DO, are most effective if they can be inserted at

the outermost loops, to ensure large granularity and small overhead.

The hybrid code structure at the top is similar to the MPI code (see §3.1), consisting of

the time-loop, group-loop and grid-loop. The group-loop runs in parallel via MPI, but the

grid-loop, which contains the computationally intensive part of the code, is multi-threaded by

OpenMP. Currently, an equal number of threads, Nthrd, are spawned per each MPI process.

In the hybrid mode, for a total number of, NcPu, processors, MPI spawns, NMPI-proc, pro-

cessors at the initial level of the main program, followed by Nth_a OpenMP threads, subject

to the following constraint, Nceu = A_ex-pro_ * Nthrd. The OpenMP thread initialization

follows a "fork/join" program. One of the threads amid ?v'th_d acts as the master thread and

the others as team members. The master in each MPI process acts as the MPI processor.

In the absence of a parallel construct, the master thread executes in serial mode while the
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Figure 2: Schematic of the hybrid MPI+OpenMP implementation; master-thread MPI com-

munication and parallel OPenMP computation.

other threads remain idle. The inter-group data exchanges across MPI processors are done

only by the masters within a MPI process.

In the hybrid implementation, a sequential communication strategy is adopted. The

packing and unpacking of messages are done in a thread-parallel fashion, but the master

thread only sends/receives the messages using MPI calls. There is no inter-group cross

communication among the threads. This strategy may be a source of sequential bottlenecks

depending upon the load of communications. In addition to MPI synchronization calls,

OpenMP threads ought to be synchronized at the end of every parallel construct. Fig. 2

illustrates the schematic of the hybrid MPI+OpenMP implementation for two MPI processes

and four OpneMP threads in OVERFLOW-D. Mater-threads within each MPI process are

exchanging inter-group data.

Load balancing in the hybrid code is static. It is furnished by the grouping strategy with

the same characteristics as in the MPI code, §3.1, at start of the first time-step. A dynamic

load balancing strategy can be sought, (not implemented in this work), by a varying number

of Nth,.a in proportion to the workload on the MPI processes. The workload can be evaluated

by the computation time per group for the first few time-steps at runtime.

The overall activities required to generate the OpenMP constructs in OVERFLOW-D

have been a result of a judicial usage of CAPO along with some manual analysis and mod-

ification. The hybrid-based code consists of over 1000 OpenMP parallel constructs, whose
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Figure 3: Illustration of a pipeline parallelization method for LU-SGS.

coding is spread out over nearly 400 subroutines. Some parallel constucts within the DCF

part of the code had to be modified and/or removed for efficiency and/or debugging. The

DCF portion of the code essentially runs in serial mode. Several parallel constructs in subrou-

tines pertinent to the flow solver have been modified; for instance, certain data dependecies

were removed in some "paralle do loop" constructs. In addition, parallel constructs in ap-

proximately 80 subroutines were found to be interfering with the memory allocation/freeing

procedure. This occassionally caused a hung program when run on O2k machines with

Nthrd > 2. All these subroutines were modified leading to stable hybrid execution.

One of the code sections that involved manual modifications is the LU-SGS linear solver.

The LU-SGS scheme [17] combines the advantages of LU factorization and Gauss-Siedel

relaxation to improve the numerical convergence rate. But the inherited data dependences

in the scheme require the availability of the solution on the previous diagonal line for each

diagonal line in the solution process. The "hyper-line" algorithm, similar to the "hyper-

plane" algorithm [2], was used in the original code to achieve reasonable parallel performance

on the vector machine. However, for a cache-based machine like O2K there are two main

limitations on the algorithm: poor cache utilization and small communication granularity.

In fact, our first version of the OpenMP LU-SGS code generated by CAPO performed very

poorly, achieved a speedup of 1.2 on 4 CPUs for a small test case. The poor performance

was a direct consequence of the original code structure for which CAPO was only able to

insert OpenMP directives to some of the inner loops.

A better approach to parallelize the LU-SGS scheme is the pipeline algorithm described

in [22]. To illustrate the pipeline method Fig. 3 shows a case of a I-D pipeline in which the



data grid is partitioned in the K dimension among four threads (or processors). Thread 0

starts from the low-left corner and works on one slice of data for the first L value. Other

threads are waiting for data to be available. Once thread 0 finishes its job, thread 1 can start

working on its slice for the same L and, in the meantime, thread 0 moves onto the next L.

This process continues until all the threads become active. Then they all work conccurrently

to the opposite end, as indicated by the large arrow in the figure. The pipeline algorithm has

better cache performance and less communication cost than the hyper-plane algorithm. We

restructured the LU-SGS code in a way that CAPO could automatically exploit pipelines

with OpenMP directives. The new parallel version of LU-SGS not only improved the parallel

performance, with a speedup of 2.9 on 4 CPUs for the same test case mentioned earlier, but

also the sequential performance.

4 Performance Results

Several experiments have been conducted to demonstrate the functionality and accuracy

of the hybrid OVERFLOW-D code, using performance results from two main test cases.

The physics of one of the test problems is related to the Navier-Stokes simulation of vortex

dynamics in a complex vortical wake flow of hovering rotors, whose solutions were extensively

studied in reference [14]. All the performance computations have been obtained on an SGI

O2K Shared Memory machine, using 512 MIPS R12K processors with a clock frequency of

400 MHz.

The test cases consist of a medium and of a large overset grid systems as follows:

• CASE 1 grid system consists of 41 grid zones, with a total of approximately 8 million

grid points.

• CASE 2 grid system consists of 857 grid zones, with a total of approximately 68 million

grid points. To the best of our knowledge, this test case is the largest MPI/OpenMP

application currently being evaluated on the O2K platform.

Solutions are obtained over many time-steps to confirm the stabilty of the hybrid code.

Residuals of the solutions are compared with the MPI code alone for accuracy. For the

performance experiments, however, computations are only carried over 100 time-steps, and

the timing mainly reflects flow computations. The DCF computation is only invoked at the

initial time-step and its impact over 100 times steps is minimal.

Runtimes (in seconds), denoted by l_xe, are normalized per each time: .... :_,ue,_b,unstep, and

reflect the sum of computation and communication, respectively. Furthermore, timings are

averaged across the number of NMpr-proe processes used in each run. The "speedup" and
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"efficiency" reported below aredefinedas a ratio of "base-runtime" to Nceu runtime, and

as a percentage of the actual speedup to the theoretical maximum speedup, respectively.

The base-runtime for each test case here is considered to be the timing T¢_e, for the smallest

]VcPu.

The number of combinations of NMPI_proc * Nthr d that would yield the same NcPu can

be limited by the number of groups, which is the same as NMPI-proc. This can not be larger

than the total number of grid zones in the problem, otherwise some group would be empty.

In addition, for reasons of load balancing, it may be necessary to keep the number of groups

less than the number grid zones.

4.1 CASE 1

Table 1 shows performance results for the hybrid implementation of OVERFLOW-D on the

O2K, using the CASE 1 test problem. Due to the application's memory space requirement,

the least number of processors necessary to run the code is NCP U : 4. Runtimes are reported

for some combinations of NMPI-proc * _Tthrd, speedup and parallel efficiency data are given

for the best of these combinations.

Overall speedup increases while the parallel efficiency is decreasing. For NcPu > 128 the

speedup is insignificant. The changes in the value of runtimes for combinations consisting

of the same value for NMPi_proc , but varying Nthrd, scales reasonably for Nthrd _ 4. For

instance for NMPi_proc = 16, the ratio of runtimes for Nthrd = 1 to Nthrd = 4 is 2.5, which

is _ 62% of the ideal value, whereas for Nth_d = 8, the ratio is _ 33_. Comparison of

runtimes within Ncpu rows on the table, consisting of combinations of NMpI_proc * Nthrd,

shows efficiency increases for NMPi_proc > 8. Furthermore, the best of hybrid runs with

NMPI_proc 2> 8, are in the same ball park as runs with Nthrd : 1, for the same NcPu.

A detailed analysis can be complex, for there are certain parameters that have to be

assessed. One is load balancing among the MPI processes. As discussed earlier, see §3, the

current load balancing strategy is static. Load imbalance may stem from both computation

and communication. For a run with NMpi-p_o_, an optimum number of NMpI-proc should be

sought. Computational load imbalance mainly depends upon the initial grouping strategy.

However, in the hybrid mode, computation may further be imbalanced by the anomalies

which may exist between CPU assignment and memory placement. The memory should be

placed on the node on which the pertinent MPI assigned Nthrd , is running.

For combination runs, with N_pi-p_o_ = 16 and ]Vthrd =1,2,4, and 8, the relative speed

up is nonlinear and reverses from 4 to 8. The nonlinear behavior is also verified based on

the computational time (not shown on the table), the cause of which may head us to issues

such as, memory placement, cache line optimization, or parallelization strategy. As discussed

in §3.2, the main computational task in the hybrid code is performed under OpenMP par-
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Table 1" Runtimes (in seconds) of the hybrid implementation on O2K using test problem,

CASE 1.

Hybrid

NCPU NMPl-proc Nthrd Texe

4 4 1 24.6

8 2 4 17.2

8 1 14.2

16 2 8 14.6

4 4 12.8

8 2 10.5

16 1 9.6

32 4 8 10.1

8 4 6.4

16 2 5.9

32 1 5.9

48 8 6 5.8

48 16 3 4.2

64 8 8 4.O

16 4 3.8

32 2 3.8

128 8 16 5.8

128 16 8 3.5

32 4 2.6

Speedup Efficiency

1. 100

1.73 87

2.65 64

4.17 52

5.86 49

9.46 30

alMism. A large portion of computational time is consumed by the linear solution scheme,

LU-SGS, in this case. The fraction of reduction of computational time, in this case, is not

small due to the fact that the LU-SGS solver lends poorly to parallelization.

Table 2 compares runtimes of the hybrid code with Nthrd = 1 to the corresponding

"MPI-alone" code. The MPI-alone refers to computations made by the MPI code with no

OpenMP directives being invoked. Due to the overhead associated with the hybrid code, its

corresponding runtime is expected to be 5 to 10% larger than for MPI-alone. For the most

partthis is true for Ncpu > 8.

4.2 CASE 2

Table 3 shows performance results of the hybrid code for some combination of MPI processes

and OpenMP threads. For the size of the problem in CASE 2, the base-runtime is obtained

based on the smallest NcPu = 56. Because of this, and since the maximum available proces-

sors on the O2K machine are 498 CPUs, the number of combinations of NMPi-t, roc * Nthrd

11



Table 2: Runtimes (in seconds) comparison of the hybrid with Nthrd = 1 and MPI-alone for

CASE 1.

_rCPU

4

8

16

32

41

Hybrid MPI-alone

Te_e re_

24.6 31.4

14.2 15.4

9.6 9.0

5.9 5.3

5.9 5.3

for this experiment is limited. Speedup increases while the parallel efficiency is decreasing

to 41% at NcPv = 448. The hybrid implementation with Nth,.d > 1 outperforms the hybrid

with Nth,.e = 1, for the same Nceu. Some issues related to the hybrid runs with Nth,-e = 1

as compared to MPI-alone are discussed below. Combinations with NcPu = 56 and varying

numbers of Nth,.e show nonlinear speedup, with almost none between 4 to 8 threads. Again,

as stated in CASE 1, this may relate to issues of memory placement, etc.

The number of messages and volume of communication per MPI process is quite large

for this test case. The communication times (not shown here) are about 30 to 40% of

the total execution times. Threads introduce additional overhead related to creation and

synchronization, which increases the overall communication time.

Table 3: Runtimes (in seconds) of the hybrid implementation on the O2K using CASE 2.

_rCPU NMPl-proc

56 56

112 56

112

224 56

112

224

336 56

112

336

448 56

112

224

448

Hybrid

Nth_d I T_
1 19.1

2 14.6

1 14.0

4 9.5

2 9.2

1 8.9

6 9.3

3 6.6

1 8.1

8 9.1

4 5.8

2 7.1

1 8.2

Speedup Efficiency

1. 100

1.36 68

2.14 63

2.89 48

3.29 41
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Table 4 compares performance of the hybrid code with Nth,.d = 1 to the with the MPI-

alone, using CASE 2. As mentioned in §4.1, inclusion of OpenMP directives would amount

to a 5 to 10°70 increase in the runtime. However, the data on this table shows a significant

increase of about 70% in runtimes. The exact cause of this anomally is not known to us at this

time, but it may be an indication of some strong interaction between MPI and OpenMP. It

appears that the problem is magnified when large numbers and volumes of messages attempt

to communicate across the processors. The O2K system utilty software "ssrun" has been

used to profile both the hybrid and MPI-alone programs, using NcPU = 112. An extensive

one-to-one comparison of captured performance data between the two codes shows that

timing on all MPI calls is almost doubled for the hybrid implementation. Both the hybrid

and MPI-alone codes are identical, except in the compilation of the latter, no OpenMP

"-mp" option is invoked.

Table 4: Runtimes (in seconds) comparison of hybrid with Nth,,d = 1 and MPI-alone using

CASE 2.

NcPu

56

112

224

336

448

Hybrid MPI-alone

:rexe %,_

19.1 15.6

14.0 8.6

8.9 6.0

8.1 4.7

8.2 4.9
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5 Conclusions and Future Work

Current parallel implementation on the multi-zonal CFD code, OVERFLOW-D, supports

MPI and a dual-level hybrid MPI+OpenMP strategy on shared memory machines and clus-

ters of SMP. Results were only tested on shared memory SGI O2K machines. The hybrid

approach delivers about the same performance as the MPI-alone, for the same total number

of processors. The hybrid implementation, however, can outperform the MPI-alone, when

the MPI-base code can not run beyond a certain number of groups, and is limited by the

number of grid zones and related load balances. This conclusion is verified for CASE 1,

above.

With respect to CASE 2, more experiment is needed to understand the strong interac-

tion which occurs between OpenMP and MPI. This interaction affects the overall timing

on all MPI calls and is particularly noticable when results of the hybrid code, running with

one thread, are compared with results of the MPI-alone, for the same number of MPI pro-

cesses. These results may be dependent upon the hardware and vendor implementation of

the parallel libraries.

Future work should focus on a more detailed analysis of the hybrid code scaling perfor-

mance. Linear solution algorithms, other than LU-SGS, should be efficiently parallelized and

tested. Certain OpenMP parallel constructs in the hybrid code need improvement that could

not be visited under the current time constraints. On the SGI O2K platform, an attempt

should further be made to investigate the effect of the placement of processes and memory,

as discussed in §4.1. The cause of OpenMP interference with MPI on the O2K machine, dis-

cussed in §4, should also be verified. Cache optimization of fine level loops may significantly

enhance the scaling performance of the hybrid code. It is essential that a dynamic load

balancing technique be implemented into the hybrid code. A detailed analysis is required

to understand the impact of various parameters on the parallel performance. Further future

work should include porting and testing of the hybrid approach on other platforms, such as

IBM SP.
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